1×h	COBALT NANO-CATALYST
	HIGHLY ACTIVE LAYERED DOUBLE HYDROXIDE-DERIVED COBALT NANO
RESEARCH	-CATALYSTS FOR p-NITROPHENOL REDUCTION
BENEFITS	BACKGROUND
Highly active Cost efficient Reusable	P-nitrophenol is a Clean Water Act priority pollutant, which has an acceptable daily intake (ADI) of 0.32 mg per day over a month. The toxicity of p-nitrophenol can be lowered significantly to p-aminophenol, which has a negligible ADI of 4.55 mg per day over lifetime.
• KEYWORDS Nitroaromatic Reduction, Nano Catalyst, Non-Precious Metal Catalyst	The department of Civil & Environmental Engineering and Earth Sciences at the University of Notre Dame has developed a nano-catalyst based on cobalt that surpasses all the cobalt- based catalysts reported so far in the literature in remediating P-nitrophenol. This is achieved by affixing Co nanoparticles on two-dimensional layered double oxide (LDO) nanodisks through thermal phase transformation of cobalt-magnesium-aluminum layered double hydroxide precursors Co(NO ₃) ₂ \downarrow
APPLICATIONS Industrial water Treatment	KEY BENEFITS Vs STATE OF THE ART Several catalysts for water treatment exist but they use very expensive precious noble metals such as palladium (Pd) and platinum (Pt). A solution is to replace precious metal by non-precious metal such as cobalt. But catalysts using the latter are usually much less reactive than those made of precious metals, suggesting a discouraging economic loss if cobalt is used to replace palladium to remediate p-nitrophenol Now with our method :
• IP	 LDO-Co is highly active in catalyzing P-nitrophenol reduction
PATENT PENDING	• The reactivity of LDO-Co is at least 49 times that of previous Co catalysts
	• The reactivity ratio of LDO-Co and Pd surpasses the price ratio of Co and Pd by 9.3
PARTNERSHIPS	 times Affixing cobalt nanoparticles on LDO prevent the nanoparticles from being aggregated
LICENCE AND/OR R&D COLLABORATION	High reactivity of LDO-Co remains after repeated reuse DEVELOPMENT STATUS
● CONTACT	We have successfully synthesized LDO-supported cobalt nanoparticules from Co-Mg-Al hydrotaclite by thermal phase transformation
Arnaud Cottet, PhD acottet@nd.edu P : +1.574.631.9766 W : ott.nd.edu	RESEARCH